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1 Introduction

About notations and conventions:
e R"={zx=(21,...,2,) 7, ER}, n > 2

e () C R” open set (domain: open and connected)

o o] = VT + Tl

o v y=mx1y1+ - +xy, forall z = (z1,...,2,),y = (y1,...,y,) € R"

o B(z,r)={y €R": |z —y| <r},r>0isanopenball. IB(z,r) is the boundary
of the ball B and the closure of the ball B is B(z,r) = BU0B.

o u:Q— R ux)=u(r,...,T,).

° (,_giu(x) = lim,_, M, if it exists. We denote 0, := %.

o Vu(x) = Du(z) = (Op,u(x), Opu(x), ..., 0, u(x))

e u = u(*,...,*) denotes a function u dependant only on the variables x, ..., %

given in the parenthesis.

aﬂﬁwmu a’vlmu &plzn

) ) Oy, U

e Hessian matrix: Dzu(x) - T2
Oyt e e Oy uu

e (A);; = ay, the item on the ith row and in the jth column in the matrix A.
o (D*u(x));; = O, 0n,u(x)

o Au(z) = trace (D*u(r))

o F(x)=(F'z),...,F"(z)), F":R" - R, x € R".

div F = 0, F' () + 00, F(x) + -+ + 05, F"(x) = Y _ 0, F'(2).
=1

e y(z): R" = R.

V(@) F(2) = (V@) F'(z),..., (@) F"(z)) .

e Support of a function w is the set: sptu := {z : u(z) # 0}.
frQ=Q f() = (f1(2), (@), ["(x))
(‘Df(‘r))z] = 8m]f2(x)



(A)ij = aij. (Cof A);; = (AF) = 57 (det A).
<A#, A> = ZZj:l (A#)ij Q35 = ndet A.

AT is the transpose of matrix A.

1
fou(z) de = mfg u(x) da, where |Q| = [,1 dz is the volume of €, is the

mean value of the function u in €.

We denote A CC B, if A has compact closure in B. We say A is strictly
contained in B. We may also denote A C B, when A and B are open.

Example 1.1. 1) Linear transport equation. v : R" x R* - R, n>1,¢ > 0.

Opu(z,t) + Zbi(:ﬂ, )0z, u(x,t) =0 (1.1)
i=1
where b; = R" x R — R are given for all i =1,... n.

2) Laplace equation. u: Q C R" — R.
Au(@) 1= By a(t) + Breyti(z) + -+ + By () = 0 (1.2)
for all x € €.
3) Heat equation. u: Q x R - R, Q C R", (z,t) € Q x R".

Owu(z,t) — (Opyayu(z,t) + Opguyu(z,t) + -+ - + Oppw,u(x, 1)) =0 (1.3)

N J

—:Auu
for all x € 2, t > 0.
4) Wave equations.
Opu(z,t) — Ayu=0 (1.4)

Linear: u,v solutions = awu + Sv solutions for all a, 8 € R.

5) Minimal surface equation. v : Q2 C R* - R, z € Q.

_ Au(x) = Oy, u(x)
div [ ——l ) =0, i — 0. 1.5

Case n = 2. u: R? - R. Given B(0,1) =: Q C R?. Want to find a function
u : © — R such that the graph of u, I'(u), has the minimal surface area and
u(z) = up(z) for all z € 0Q. The surface area of I'(u):

A(u) ::/Q\/1+ IVu(z)|.
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Suppose that u is the function such that u = uy on 0 and I'(u) has the minimal
surface area.

Claim: u is a solution to (1.5).

Proof. For all ¢ € C°(Q2), t € R, spty C Q, let

v(x) == u(z) + te.
Then v(x) = ug(x) for all z € 9. Let
h(x) := A(u(z) + te(x)).
Then
A(u) < A(h) = A(u + tp).

Define h(t) = A(u + ty). Function h reaches its minimum at ¢ = 0. Therefore
hi—o(t) = 0.

) = A(u—l—t(p)—/Q\/1+|Vu(x)+th0(:r:)\2 dz

/ (Vu(z) +tVep(x)) - V()
W)= = dx
/Q \/1 + |Vu(z) + tVp(z)]?

s,
21+ [Vu(z)|®
ib.p. _/djv Vu(z) o(x) de =0

1+ |Vu(@)]?

for all ¢ € C§°(€2). Here i.b.p. denotes inegration by part, see Theorem 1.11.

Therefore! div Vu(z) =0.
1+ |Vu(z)[
Poisson equation.
Au(x> = ammu(x) + amm +oee aﬁDniEnu(I) = f(CL’) (16)

where f:Q C R" — R is given and u(z) :  — R is unknown.

Nonlinear Poisson equation.

Au = g(u) (1.7)
where g : R — R is given, for example: g(t) = —t +t3: Au= —u + u?

! Exercise. Let @ C R™ and u € C(Q). Suppose that [, ue dz = 0 for all ¢ € C5°(€2). Show

that u(z) =0 for all z € Q.



8) Helmholtz’s equation. (Eigenvalue problem for A.)
— Au=\u (1.8)
where v : Q C R” — R unknown and A € R.
9) Biharmonic equation.
Au = A (Au) = i@xw (i &wju(ac)) = 0. (1.9)
i=1 j=1
Note: Solution to Laplace equation is a solution of Biharmonic equation.

10) Eikonal equation.

Vu(@)| =/ Or (@) + -+« + 0y, (@) = 1 (1.10)
where v : Q@ C R" — R.
11) Monge-Ampere equation.
det (D*u(z)) = f() (1.11)
where u : 2 C R" — R unknown, f: € — R.

12) Hamilton-Jacobi equation.
Owu+ H(Vu) = f (1.12)
where u = u(z,t), f = f(x,t), u : Q xRt - R. H : R" — R given and
f: QxR = R. For example: H(y) = |[y*: du+ |[Vul> = f.

13) Euler’s equation for incompresible ideal fluids. @ C R", n =2,3. u: QxR — R",
u(z,t) denotes the velocity of the fluid at the position z at given time ¢. u(z,0) =
up(z) is given.

ou+Du-u = —-VP
divu = 0 (1.13)
u(x,0) = ug(x), divug =0  (initial condition) '
(u,v) = 0on 0 (boundary condition)

where u(z,t) is the velocity and P(x,t) is the pressure.

Let f(z,t) be the place of particle x at given time ¢ such that f(z,0) = z. f :
Q) — Q). Then

d
&f(x,t) =u(f(x,t),t), (1.14)
% (x,t) =a(f(x,t),t) = =VP(f(x,t),t). (1.15)
Equation (1.14) implies

D (%f@;, 9) = CD(f(x,1) = Dou(f(z,1),1) = Du(f(x,1),)Df(x,1).
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Thus,

(5 Prw.0),(PFw0) ) = (Dulfe.0,0D 5.0, (D1 1))
- <Du ), (Df(x, )* Df(:c,t)T>
~ (Du(f(x > et Do

= ndet (Df(x,t))trace (Du(f( x, ),t))/

'
=divu

= Lder (D(f(2,1)
—_——

dt
=:A
"0 d
- det(A) = aj;
z]ZZI a“ij ‘ ( )dt Y

Therefore

d

= (det (Df (1)) = i(leU(Ji(r t),t)) det (Df(z,1)).

=0

which is equivalent with
det (Df(x,t)) = det (Df(x,0)) =1

since the fluid is incompressible and f(x,0) = x.

Equation (1.15) implies

at“(f(xt)vw + Du(f(x,t), t) —f(l’,t) = _Ap(f(xvt)v t)

Denote f(z,t) = y. Then for all y € Q,
Opuly,t) + Du(y, t) - u(y, t) = —=AP(y,1).

Navier-Stokes equation for incompressible, viscous fluids.

ou—Au+ Du-u = -VP
div u = 0
u(z,0) = up(x), divug =0 (1.16)
u(z,t) = Oforallt> 0,z € 9.

where u: Q x RT - R", Q CR" and P: Q x RT — R.



Navier-Stokes existence and smoothness problem ($ 1 million problem):

Prove or give a counter example of the following statement (n = 3): Given smooth
uo(z), there exists (u, P) smooth in 2 x R™ that solves the equation (1.16) with
finite energy

/ lu(z, t))* dt < M < oo for all t > 0.
Q
Historic notes:

e Leray (30”), Hopf (50°) existence of weak solutions.
e Ladyzhenska (507), n = 2.
e Caffarelli-Kuhn-Nirenberg (807).

/ Opu' -’ -u' do = / u'o (— |u|2) dz
Q Q 2

iLb. A
bp —/ (E (‘9ij3> §|u|2 dr =0.
Q -
j

N————

=divu=0

Fun part:

Where integration by part (i.p.b) is used in a manner:
—/QVP-udx:/QP(divu) dz =0
=0

Definition 1.2 (Partial differential equation). A partial differential equation (PDE)
is an equation involving an unknown function of two or more variables and certain of
its partial derivatives.

Definition 1.3 (PDE of order k, multi index o, D). Fix k > 1, an integer. An
expression of the form

F(D*u(z), D" u(z), ..., Du(z),u(x),z) = 0 (1.17)
is called a k-th order partial differential equation, where
F:R" xR" ' x--xR'"XRx Q=R

is given and u : 2 — R is the unknown function. We use following notation. Let
a=(aq,...,0ay), a; > 0 non-negative integer. Set

o] =1 +as+ ...+ ay,

and
olel



Remark 1.4. Note that D?*u(z) is used to denote the Hessian matrix of u(z). See the
context!

Definition 1.5 (C(Q), C*(Q), C§(Q)). We denote
C(Q)={f:Q—R: fis continuous in @ C R"},
CHO) ={f:Q=R:fecC(), D*f € CQ), |a| <k}

and

CE(Q) = {u c C*Q) :sptu={z € Q:u(x)#0} CQ, sptu compact}

Definition 1.6 (Linear, semiliniear, quasilinear and fully non-linear PDEs).
(i) The PDE (1.17) is called linear if it has form
Y ba(2)Dulz) = f(a),
lal<k
where b, and f are given.
(ii) The PDE (1.17) is called semilinear if it has the form
> balx z) + B(D*Yu,. .., Du,u,x) =0
|a|=k
where b, and B are given.
(iii) The PDE (1.17) is called quasilinear if it has the form
Z bo(D" ..., Du,u, 2)D*u(z) + B(D*u, ..., Du,u,x) = 0.
|a|=k
where b, and B are given.
(iv) The PDE (1.17) is called fully non-linear if it depends non-linearly upon the
highest order derivatives.

Definition 1.7 (Solution to a PDE). u € C*(Q) is called a solution (classical solu-
tion) of equation (1.17), if the equation holds for every x € Q.

Definition 1.8 (C' set, outward unit, outward normal derivative). Let Q C R™ be
a bounded domain. € is called C! set or smooth set and denoted Q € C*, if for all
1o € Q there exists r > 0 and C! function g : R"! — R such that (relabeling the
coordinates, if necessary) we have

QN B(xg,r) ={zx € B(xog,7) : Ty > g(x1,..., 2, — 1)}.
If Q € Ct, then for all 2y € 9Q there exists unique outward unit

v(zg) = (l/i(lL‘()),VQ(ZL‘O), ey V”(xo)) , v(zo)] = 1.
Outward normal derivative is then defined by setting

ou

5(%) Vu(zg) 28 u(xg) xp).



In

<

Rn—l

Figure 1: C* set

Figure 2: C? set and its outward unit at point z

Example 1.9. e For a ball B(0,r) the outward unit is v(xg) = 2% = .

ol

e Important! For a ball B(yo,r) the outward unit is v(zg) = 2.

Definition 1.10 (C*(Q)). We denote
') ={u:Q—=R:ueC'(Q), d,u has continuous extension to 2 V1 <i <n}.

Theorem 1.11 (Integration By Part). Let Q C R™ be a bounded C' domain and
u,v € CHQ). Then

/axiu-v dx:/ u-v- v dS(x)—/u-&civ dz,
Q o0 Q

where v(z) = (V'(x),...,v"(x)) is the outward unit at x € Q and dS(z) indicates the
(n — 1)-dimensional area element at x € 0f).

Theorem 1.12 (Gauss-Green Divergence Theorem). Let 2 C R" be a bounded ct
domain and v € C*(Q). Then

/(‘Liu dx:/ w-v' dS(z) (i=1,2,...,n).
Q o0

10



Proof. Proof follows by applying integration by part with v = 1. O
Corollary 1.13. Let F(x) = (F(z), F*(x),...,F"(2)) € CH{Q)NCY(Q). Then

/Q div F(z) dz — / F@) - () dS(x).

o0
Proof. . .
/ >0, Fi(w) du = / > Fi(z) - vi(z) dS()
€= 02 =1
O
Note: Because the writer is lazy, we don’t necessarily denote every ”-” anymore.

Theorem 1.14 (Green’s formulae). Let u,w € C?(Q2) N C*(Q). Then

(i)
/Q Au(z) de = m%@;) aS(x).
(1)
/Q Vu(e) - Veole) de = 89%(@ Cw(e) dS(z) — /Q (Au()) - w(z) dr.
(iii)

ou ou
/Qu(a:) -Aw(z) —w(x) - Au(x) doe = /89 u(z) - 5(%) —w(x) - %(1’) dS(x).
Proof. Remember the equation

/Qﬁmif(x)'g(l“) dr = an(fﬁ)'g(x)-Vi(I) dS(x)—/Qf(fU)'amig(x) de. (1.18)

Proof of part (i). Employ (1.18) with f = 0,,u and g = 1 or apply Corollary 1.13 to
F(z) = Vu(x) to obtain

/QAu(x) = /QdiV(Vu(x)) = ., Vu(zx) - v(z) dS(x).

Proof of part (ii). Employ (1.18) with f = w and g = 0,,u. Oaiy
Proof of part (). Write (ii) with v and w interchanged and then substract. O
[l

11



2 First order linear equations

2.1 Simple PDE

Let u:R? - R, u = u(z,y).
dyu(z,y) = 0.

Solution: u(x,y) = g(y) for a function g : R — R such that g € C*(R). Is this the

only solution?
Let u:R?* - R, u = (z,y).

adyu(z,y) + boyu(z,y) = 0.

Solution: u(z,y) = g(—bx + ay) where g € C'(R).
Check:

aaa:u(xv y) = g/(—bl‘ + ay) : (_b) “a
boyu(z,y) = ¢(=bx+ay)-a-b.

(2.1)

Also, is this the only solution? Let’s see how this solution can be deduced.

2.2 Method of characterictic curves

Let us assume that we are given a solution u to (2.1). Fix (zo,40) € R? to find a

curve I' C R?
I'={(z(s),y(s)) : 2(0) = 20,y(0) = 9o, 5 € R}.
Let
z(s) = u((z(s), y(s))
Then
0z

Now letting

{C%x(s) = % {%y(s) = b

imply
z(s) = as+x
y(s) = bs+yo

and we obtain
bx(s) — ay(s) = bxy — ayp.

Thus,

%z(s) = adyu(z,y) + boyu(x,y) = 0.

%(3) = Oyu(z(s),y(s)) - %a}(s) + dyu(z(s),y(s)) -

y(0) = o

(2.3)

Therefore z(s) = z(0) for all s € R so u(z(s),y(s)) = u(xo, o). Equation (2.3) then
implies that for all (z,y) € R? u(x,y) = g(br — ay) is a solution to (2.1) for any

g € CY(R).

12



2.2.1 Adding boundary condition

Let u:R? - R, u = (z,y). Now add boudary condition to equation (2.1).

ad,u(z,y) + boyu(z,y) = 0 (2.4)
u(0,y) = y? (boundary condition) '

Fix (z9,%0) € R? to find a curve I' C R?

I'={(z(s),y(s)) : (0) = z0,y(0) = yo, s € R}.
Let

Now letting

ix(s) a %y(s) b
{695(0) Lo and {831(0) = Y%
implies

x(s) = as+x

{y(s) = bs+yo
Thus,

%z(s) = adyu(z,y) + boyu(x,y) = 0.

Therefore z(s) = z(0) for all s € R so

u(z(s),y(s)) = u(xo, yo)- (2.5)
Choose sy = =2, Then z(s¢) = 0, y(s0) = —Sxo + 9o and

Aso) = ulalso), ylso) )

botzfla_ry b 2
COnzltIOIl (__xO +y0) )
a
From equation (2.5) it follows that

u(a,y) = (—Sx + y>2 .

Theorem 2.1. Problem (2.4) has exactly one solution.
Proof. Ezistence. u(z,y) = (—2z + y)2 is a solution. O existence

Uniqueness. Let v be a another solution. Then w = u — v is a solution to

adyu(z,y) +boyu(zr,y) = 0
u(0,y) =0

Calculate and obtain w = 0 on R2. Utniqueness
O

Remark 2.2. Solution is similar to any boundary condition u(0,y) = g(y).

13



(%0, yo0)

anyO)

//(0, )

Figure 3: Characteristic curve of u

2.3 Another generalization

—yO,u(z,y) + z0yu(z,y) = 0 (2.6)
u(0,y) = 3
Now similar calculation follows. Set

ggw)z—M$amu%M®=$®)

This leads to the equations

frto) = a0

which imply

0? 0
@I( ) = s (s) = —x(s)
Thus
{x(s) = Vad+ys - cos(s +a)
y(s) = Vag+ys - sin(s +a)

Lo
V5 +

Choose sy such that z(sg) = 0 and solve u(z,y) for arbitrary (z,y) € R?. Then
try to mimic the uniqueness theorem for the previous equation.

Also, it can be shown that all solutions are of the form u(z,y) = g(z*+ y?) for all
(z,y) € R? and for some g : R — R.

where cos o =

Remark 2.3. Note that our boundary condition works and others do not, for example
u(0,y) = y°*.
Try the same algorithm for problems
{—M%wa)+x%uwﬁn = u(z,y), f(z,9), fluz,y)...
u(0,y) = 9(y)

Details will be covered in the exercises.

14



Example 2.4. Solve equation

Oyu(z,y) + u(zr,y) = =«
{ (0, ) _ oy (2.7)

Solution: Fix (xg, o). Suppose u is a solution. Consider
I':={(t+xzo,t +1yo):t€R}.

Define
2(t) == u(t + zo, t + o).

Then 2/(t) =t + o by the first equation in (2.7). By The Fundamental Theorem of
Calculus we have

t t
1
2(t) = 2(0) + / 2'(s) ds = u(wo, yo) + / s+ xo ds = u(xo, yo) + §t2 + xot.
0 0

Choosing t = —xy we get
1’2 bou(ril.dgry
u(zo,yo) + 50 — x5 = z(—x0) = u(0,y0 — w) “"F" yo — wg

which implies
2

T
u(xo, Yo) = ?0 — Zo + Yo-

Since (zg,yo) is arbitrary, we have u(x,y) = % —x +y for all (z,y) € R2

3 Linear transport equation

Let u: R" x R" 5 R, u = u(x,t), z € R", ¢t > 0.

Owu(z,t) +b-Vyu(z,t) = 0 in R” x R’ (3.1)
u(x,0) = g(z) forallz e R™~ '
where b = (b',0%,...b") € R" and V,u(z,t) € R" does not include time t.
Solution: Fix (xg,tp) € R™ x R’ to find curve
[':={z(s) e R" : 2(0) = 2o, s € R}
where x(s) = (21(s), 2%(s), ..., z"(s)).
Define
z(s) == u(z(s),to + ).
Then for s = 0 we have z(0) = u(xg, tp) and
0 0
gz(s) = Owu(x(s),to + s) + Vau(x(s), to + s) - ga:(s) (3.2)

15



0
If —x(s) =, equation (3.2) equals to 0 and we have z(s) = z(0) = u(xo, o) for all

Js
0x(s) B
{ ds b

s e R.
Now,
z(0) = =zo

implies z(s) = xo + bs. So
2(s) = u(xo + bs, 1y + s).
Setting s to —to gives z(s) = z(—ty) = u(xo — tob, 0) = g(zo — tob). Thus
u(z,t) = g(x — tb).

Remark 3.1. Similar method can be used for the problem

Owu(z,t) + b(x) - Vyu(z, t) = 0 in R” x R* (3.3)
u(z,0) = g(z) forallxz e R"~ '
or the problem
ou(x,t) +b-Vou(z,t) = f(z,t) inR*xR (3.4)
u(z,0) = g(z) forallzeR™’ '

where f is given cost function.
Note that now

0
/ flro+0bs,to+s)ds = / ) ds = 2(0) — z(—tp)
= l’o,to) —U( O—bto,O).
Thus o
u(m,t):g(a:—bt)~|—/ flz+bs—t+s)ds.

Remark 3.2. Problems with the coefficient b depending on u (or even Vu) are in
general very difficult!

Example 3.3. 1) Burgers equation. u: R x R" = R, u = u(z, t).

Owu(z,t) + u(z,t) Oyu(z,t) =0
—p?

2) Hamilton-Jacobi equation. u : R” x R — R, u = u(z,1).

atu + |VU|2 =0.
——

= Vbu -Vu

16



3) 2D-Euler equation. u : R? x Rt — R? u = u(x,t) = u(u'(x,t),u*(z,1)).

{&u—i—Du-uz —-Vp

divu=0 ’

where p: R* — R, p € C*(R?).
The first equatio is equal to

Oyut Opyut Oput (u') 0w D
(one) = (o o) () == (o 39)

From the equation (3.5) we obtain

2
ot + Z Qpu' ~u! = —0yp (3.6)
j=1
2
ou® + Z Opu” - = —0p,p. (3.7)
j=1

Applying 9,, to both sides of equation (3.6) and 0., to both sides of equation (3.7)
we obtain

2 2
Or,0u' + > 05, 0p ' -0 = = 04,00, p = —00, 00, p = 00, O” + Y 0y, 0 u” - 00

Jj=1 Jj=1

This implies
Oy (8x2u1 - (?xluZ) =0.

J/

VvV
=:w, vorticity

So we have an equation

Ow+_u -Vw=0.

=:b?

4 Laplace equation

Remember the Laplace (Laplacian) equation:
0=Au(x) =) Oyzu(z) = div(Vu(z)). (4.1)
i=1

Definition 4.1 (Harmonic function). We say that u € C?*(Q) is a harmonic function
in Q C R™ if Au(z) =0 for all z € Q.
Example 4.2. Some harmonic functions:

1. u=c¢

17



2. u(z) = 23 — 23, u(x) = T179
Bou(x)=b-z+c=> 1" bxi+c

4. u(x)e™ sinwy. Check: Oy p u = €7 sin g, Opyryitt = €71 sin T9.

5. u(r,0) = r¥sin(kf) = Re(z*), u(r,0) = r* cos(kf) = Im(z*), when z = (e” \z])k

Example 4.3 (Derivation of equation). Let n = 3. Let F : Q — R3 F(x) =
(F'(x), F*(z), F3(z)) be a an electric field. Let z,y € Q. Pick v : [a,b] — R3 such

that v(a) = = and «(b) = y. Then the integral

[ Fas= [Cram v a

does not depend on the choice of ~.
Fix z¢ € Q). Then

implies F(x) = Vu(x), if u(xy) = 0.

T b
/ F.ds = /Vu(v
zo

(
— u(yb) —

Fact: Electric field is divergence free, that is div F' = 0. Thus

-~

t)- (1)) dt
ul(y(®)

u(y(a)) = u(z) = u(zo).

Au = div(Vu) = 0.

The energy of electric field is
B = / F(2)]? da
Q
= / |div u(z)|” da.
Q
Theorem 4.4 (Fundamental solutions). ¢ : R*\ {0} — R,

1
5 og |7/, n

O(z) = .

2—n
_— >3
n(n —2)a, 7 2

defined on R"™ \ {0} is the fundamental solution of Laplace equation.

|B(0,1)| is the volume of the unit ball of R™.

18
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Proof. n > 3: A®(x) =0 for all z # 0. (Exercise.?)

n = 2: Oh, you just calculate! m
1
Remark 4.5. e For ally € R", ®(z —y) = —————— |z — y|*" is harmonic, if
n(n —2)a,
T #y.
e For all f € C°(R") define
ue) = [ o - iy =t [ o) fwa
R R™\B(¢)

The limit exists: Let (g;)22, be such that &; — 0. Do the change of variables®

/ O(2)f(x — z)dz
R™\B(0,&;)

< [ Gl =) b

/ (o y)f(y)dy‘ vy
R"\B(J},Ei)

[@(2)| [ f(x — 2)|dz

<M

= M/ |D(2)| dz
B(0,R+|z|\B(0,¢;) ~—~—"

Cn
n—2

/B(O,R+x|\B(0,5i)

=]

< C,

since f € C§°(R™) and it has a compact support in a ball B(0, R + |z|) and
therefore |f| is bounded by M. It then suffces to prove that

(Ai)iZo = (/R"\B(ac,si) res y>f<y)dy) :0

is Cauchy sequence by using the previous approximation.

2Calculate A |z]*.
3" don’t know why you guys do the change of variables. It’s lot more difficult that way.” —
Zhong
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For all e1,e9 €]0,1[, &1 < €2, n > 3,
A, — A, = / 2~ )| [f0)] dy

B(z,e2)\B(z,e1) >M

< M / Bz —y)| dy

B(x,ag)\B(x,al)

= M / Mdz

B(z,e2)\B(z,e1) Chlz|™~ 2

—we, [T e asar
€1 0B(0,r)

= MC/ Zm19B(0,r)| dr
—_———

7no¢n7"" 1

= M / rdr = — &)
€1
Thus we have a Cauchy sequence.

Theorem 4.6 (Solution of Poisson’s equation). Let f € CZ(R"). Define u by

u(r) = lim O(z —y)f(y)dy.

e—0
R\ B(x,e)

Then

(1) u € C*R")

(i) —Au(x) = f(z) for all x € R".
"Proof”.

uw) = [ 2 9)rw) dy

ou(x) & | 0,0 —y)fly) dy

Rn
Bua) = Y Oumulo) = [ 30 00,00 — ) F) dy
= =3, ()
= —f@)

20



The real proof. Proof of (i). u is continuous: Fix z € R™. For all € > 0, we wish to
find § = (e, z) > 0 such that |f(z) — f(x)| <eif |z — x| <.

u(z) —u(z)] < RJ¢@HU@—y%—ﬂm—yﬂdy(R”wnmﬂwhw®

_ / D) |f(z — ) — flz —y)| dy
B(0,R+|z|+46)

Vv
<4z for some § since f is
uniformly continuous

O(y)| dy

J/

€ / |
M Jp(0.R+|zl+9)

=M
= ¢

when ¢ is chosen to be small in enough.
u € CHR™):

u(x—i—he];) — u(x) _ /n o(y) f(x—i—he]i) — f(z) dy

. J

~
has compact support for all h

he, —y) — f(a —
Since for all € > 0, there exists hg = ho(¢) > 0 such that fletheizy) = flr=y)

Oy, f(x —y) < eif |h| < hy, we have h
() = [ G- v) dy
Similarly,
0.0,u(e) = [ Vw001 v) dy
so u € C*(R™). D)
Proof of (ii).

Bule) = [ 2)af-y) dy

= lim P(y)A,f(x —y) dy

e20 Jrm\B(0,¢)

=: lim[..
e—0
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I. = / P(y) A, f(x—y)dy (R" can be replaced with B(0, R))
R7\B(0,¢) \'/-/
ip.b 0 0
2 [ e S+ [ B fle - ) dSW)
JO(O,R) ov _ JoB(oe) v )
=11 _2

Vy@(y) - Vyflz —y) dy.
B(0,R)\B(0,¢)

(. J
~~

—.73
e

I! =0 when R is chosen to be big enough. Also,

0
o< [ el [ g asw

constant on

B(0.€)
1 2—n

— C gn_l Mn(n—2)an€ ) n =z 3

= — Ms-logl,  n=2

=[0B(0,)]

aMs, n>3
Melog %, n =

e—0
— 0.

g Sy s [ e s dy

B(0,¢) ov T
For n > 3 &(y) L Lagy) = Vo) - v(y) and oy) =~
orn = - —_— = -V an 1% = ——,.
2390) = so—g - 5,00 y) - vy y m
calculation
y> ™" ly| "
VO(y) - v(y) = —(—1) - _
(y) - v(y) (—1) - .
no,

22
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So,

K - —nlf_"“ /aB(O)f( ) dS(y)
- f  —je-yasw
0B(0,¢e)
= f()

Dy

5 Harmonic functions

Theorem 5.1 (Mean Value Theorem). Let Q C R"™ be a domain and u € C*(Q).
The following are equivalent:

(i) Au =0 in (2,
(1) u(z) = f,5 ey W) dS(y) for all B(z,r) CC Q and
(111) u fB () W) dy for all B(z,r) CC .

Proof. (z) = (ii). Fix a point z € Q and define

o(r) = ]{MW) u(y) dS(y)

for all 0 < r < dist(x, 0€2). It then suffices to show that

de
ar =

since

lim u(y) dS(y) = u(x).

r=0JaB(z,r)

dQO Ex. ][
— = Vu(z +ry) -y dS(y
I e (@ +ry) ()

Chamkg)ie of ( ) 2—T
varl% es . dSZ
/aBm 0B, 1 45¢)
1
= _— Vu(z)-v(z) dS(z
TIOBO.)] Jopeyy * 1)V A
—_——

=|0B(z.)|

rop /Au(z) dz =0.
——

=0

Do) = a
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(i1) = (i). By the previous calculations Oy = )

(i) = (i1). Fix B(x,r) C Q. Then

]i (m)u(y) dy = m /B T(M)u(y) dy
- m/o |:/BB(ac,t) uly) dS(y)} dt
- m /0 |B(, )] |:]£B(m,t) u(y) dS(y)} dt

N J/

—u(z)
u(z) /T
— 0B(z,t)| dt
B,y 1770
= u(x).

Oy = i)
(1ii) = (ii). As above. Dy = (i)
[

Remark 5.2 (Additional fun). Define
. 7nfB(:z:,r) ’vuﬁ dy
faB(;,;J) u? dS(y)

for all z € Q, 0 < r < dist(x,09Q). (Compare ¢ with entropy.) Then ¢'(r) > 0, if
Au = 01in €. Also

o(r

o(r) = N(z) (€Z") asr — 0".

The integer N(x) is called the frequency of u at the point x.
Exercise: Calculate N(0) for u = r* cos(kf).

Theorem 5.3. If u € C(Q) and satisfies the property (ii) of Mean Value Theorem,
then w € C*Q). In particular, u is harmonic in €.

Proof. To be proven later. O]

5.1 Convolution and smoothing

Definition 5.4 (n-mollifier). Define n : R™ — R by

1 .
Cexp (|x|2—_1) if |I‘| <1

0 otherwise

n(z) =

and set C' such that [, n dz = 1. Call it n-mollifier* or simply mollifier.
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Figure 5: Plot of exp ( 5 1) by KmPlot
:L‘ —_—

Exercise: Show that n € C§°(R") and sptn = B(0, 1).

Definition 5.5 (7.). For € > 0 we set

ne(z) = in <£> :

en 9

Then 7. € C§°(R™) and sptn. = B(0,¢).
Definition 5.6 (Mollification, *, f.). Let f € C(Q2), where 2 C R” is a domain and
let € > 0. Then the mollification or smoothing of f by 7. is defined as

@) = nx fl2) = / ne( — 1) f(y) dy
- /B DI d

where x € ), and
Q. :={y € Q:dist(y,00) > ¢} .

Theorem 5.7 ("Mollifier Theorem”). Let f € C(§2). Then

(1) fo € C®(Q.) for alle >0 and
(ii) f- — f uniformely on compact subsets of €.
Proof. Proof left as an exercise.

Definition 5.8 (Smoothing by local averaging). Define
XB(0,1)

(o) = T

[B(0,1)]

4y is just one of possible mollifiers. If you're new to mollifiers, read the Wikipedia page.
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f f€1 fé—?z f€3
_ 7782
Neq :
R?’L

Figure 6: Smoothing of a function f by some 7_,

1
and 7.(x) = 5777 (g) for all e > 0. Then [g, 7. dz =1 for all € > 0.
Also, define

y 1
c =% f = dy = ——— d
fer=nxf ]i (M)f(y) Y= B /B (m)f(y) Y

and call it smoothing by local averaging.

5.2 Properties of harmonic fuctions

Theorem 5.9. Suppose that u € C(Q)) satisfies the Mean Value Theorem property

u(z) = ]{)Bw) u(y) dS(y)

for all B(xz,r) C Q. Then u € C*(Q) (and u is harmonic).
Corollary 5.10. Harmonic functions are C.

Proof of the Theorem 5.9. Let

ue(x) == ne x u(x)

for all x € Q. and € > 0. We first claim that u(x). = u(x) for all = € .. By Mollifier
Theorem part (ii), u € C*(Q).

u(z) = / L) dy

- [ =9l as)] at

= /osi" UaB(m) n (I ; y) u(y) dS(y)}
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Figure 7: Integral Cat [7]

Define h(z) such that n(z) = h(|z|).

Then
eh t
I = /L/ u(y) dS(y) de
o €' JoB(ap)

N

-~

=u(z)|0(z,t)]
= u(:c)/o @\G(x,t)] dt
= u(z) /n ne do = u(z).

Corollary 5.11. u is harmonic = 0%u is harmonic.

Theorem 5.12 (Weak and Strong Maximum Principle). Let 2 be a bounded domain.
Let uw € C*(Q2) N CY(Q) be a harmonic function. Then

1) maxu = maxu CLTLd
() —
Q o0

(ii) if there exists 19 € Q such that u(z¢) = maxu then u(x) = u(xg) for all x € .
0

Proof. 1t suffices to show (ii). Because xy € €, there exists r > 0 such that B(zq,r) C
2. Then

u(zg) = ]{9( )u(y) dy = M := maxu.
0,

—~~ Q
<M
So u(y) = M inside B(xg,r). Therefore u(z) = M for all x € €. O

Remark 5.13. Since Au = 0 <= A(—u) = 0, similar minimum principle can be
derived for the harmonic functions.

Theorem 5.14 (Uniqueness of a solution to Dirichlet problem). Let Q be a domain,
g € C(02) and f € C(Q). Then there exists at most one solution to the Dirichlet
problem

Au = f nQ
u = g on oS
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Proof. Let u,v € C*(Q) N C*(Q) solve the Dirichlet problem. Set

wi=u—0.
Then w € C%(Q) N CHQ) and
{Aw = f inQ
w = 0 ond.’
Thus w = 0, by the Weak Maximum (and Minimum) Principle. O

Theorem 5.15 (Local estimates for harmonic functions). Let u be a harmonic func-
tion in an open set ) C R™. Then

Ck
Du(zy)] < - / fu(y)] dy
r +k B(zo,r)

- (2n+1nk)k
for all B(xzo,r) C Q. Here k = |a| and ¢ = ———%—.
|B"(0,1)]
Proof. k= 0.
e L
anT™ B(zo,r)
1
< [ )l
anT B(zo,r)
Uk =o
k =1. Use the Mean Value Theorem for 9,,u:
M.V.T 1
o) M | [ au) dy
an (5)" J/Bao.5)
i.b.p 1 i ;
S [ e v 4w (] <D
an (5)" JopGo.s)
1
< [ )] dS()
o (5)" Jonta.5)
Using the estimate from the case & = 0, obtain the claim. Oy —1
k > 2. By induction, in a similar fashion.? Ok > 2
]

Theorem 5.16 (Analyticity of harmonic functions). Let u be a harmonic function
in Q. Then u is a weak analytic in ). (That is, it can be locally expressed as a
convergent power series).

57Yeah! It seems to work. I'm too tired to prove anything so let’s say we used induction.”
—Heikki
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Proof. To show: For all xy, u can be represented by a convergent power series in a
neighbourhood of xzy. Taylor formula: For some 0 <t <1,

u(z) = wu(xg) + i Z ﬁDo‘u(mo)(x — 20)°
k=1 |a|=k

1 (03 (e
+ Z ED u(zo + t(x — o)) (x — 20)7,
|a|=N

J/

-~

=Ry
where y* = yi" - y5%---yo» and ol = aq! - ag!---ay,!. Note the following & = 1:
Vu(zo) - (x — z0), k = 2: 3 (D?u(xo)(x — 20)) - (x — o). Then
1
u(z) = u(xg) + Vu(zg) - (x — x0) + 3 (D*u(zo)(z — x0)) - (¥ — 20) + . ..

Let r = 1 dist(zo,00) > 0. Let y = x¢ + t(x — x0). Then |y —xo| < |z — 20| < 1.
Now by Local Estimate Theory, for all |a] = N,

on+1 ||
%/ lu(z)] dz < CfN/ lu(z)| dz
Oé(ﬂ)?"n “ B(y,r) T B(xo,2r)

(. J/
-~

IA

| D%u(y)|

CN
Tn—I—N :

Here a(n) = |B™(0,1)|. Therefore

|[Du(y) M N
Bn(@)| < ) =5 < D —on 0 0.

la|l=N |a|=N

]

Theorem 5.17 (Liouville’s Theorem). Suppose that u is a bounded harmonic function
m R™. Then u 1s a constant.

Proof. For all xy € R",

Cn
V()| < - / fu(y)] dy
r B(zg,r) ~N""
<M
Menapr™ 00 0
Tn—l—l

for all B(xo,r) C R™. Thus |Vu(zg)| = 0 for all 5. Therefore u is constant in R™. [

Theorem 5.18. Let u be a harmonic function such that
|u(y)| dy < oo.
Rn

Then u =0 in R".
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Proof. For all g € R”
1

<
|u(o)| i

[l ay=o.
B(zo,r)

O

Theorem 5.19. Let u be a harmonic function in R™ such that it is bounded from
below or above. Then u 1s a constant.

Theorem 5.20 (Harnack’s Inequality). Let u € C*(Q2) be a harmonic function and
uw(z) > 0 for all x € Q. Then there exists a positive constant C' = C(n) such that

max v < C min u
B(z,r) B(z,r)

for all B(x,5r) C Q. Here C' = 4" will do.5

Proof. Fix B(x,5r) C Q. For all y,z € B(xz, )

1
ay) = [ ulw) du= [ utw) dw
B(y,4r) Ozn(4r)” B(y,4r)

1 1
> — / u(w) dw
4™ o, ™ B(z,

1 1
= — u(w) dw = —u(z),
4n B(z,r)

since u > 0 and B(y,4r) D B(z,r). Thus for all y, z € B(z,r),

%u(z) <u(y) < 4"u(z).

O

Corollary 5.21. Let u be a non-negative harmonic function in Q. Then for all
Y CC Q there exists C' = C(Q,Q) such that

max v < C'minu.
Q' Q

Remark 5.22. For B(z,2r) C Q, B(z,r)C U B(y,%). Since B(z,r) is compact,
yEB(z,r)
there exists N € N and yj, ..., yy such that B(z,r) C Uljil B (y;, £). By Harnack’s
inequality
max u < 4" min wu,
B(yi,%) B(:’/iyg)

since B(y;,r) C B(z,2r) C Q.

67 Actually, it seems, you can pick C' = 2" and repeat the proof, but again I'm too lazy to do
that.” —Heikki
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Proof of the Corollary follows from here:

Proof of the Corollary 5.21. Let Q' be such that € C Q is compact. Set

1
= —dist(Q', 00 .
"= 150 dist (2, 0Q) > 0

Then ' C U,ewB(y, 7). Since Q' compact, there exists N € N and w1, ...,yn such
that o
Q' c UX, B(y;, 7).
Forall:=1,..., N,
max u < 4" min wu,
B(yir) B(yi,r)

since B(y;, 5r) C Q. Therefore Corollary is proved with C' = (4™)". O
Now, using Harnack’s inequality, prove the Theorem 5.19:

Proof of the Theorem 5.19. Let u be bounded below. Then there exists M € R such
that M < u(x) for all x € R™. Let

v(x) = u(z) — M.
Then v is harmonic and v(x) > 0 for all z € R". Now by Harnack’s inequality,

maxv < 4" min v

B(O,’I‘) B(O,T)
< 4"(0) = M

for all B(0,5r) C R™. Thus v(z) < M for all x € R", so v is bounded. By Liouville’s
Theorem, v(z) is a constant. Therefore, u(z) is a constant also.
Proof for a function bounded above in same fashion. O

Theorem 5.23 (Very Strong Maximum Principle). Let w > 0 in Q@ C R"™ be a
harmonic function. Then there exists C' = C(n,d) > 0 such that

max v < C min wu
B(x,dr) B(z,0r)

for all B(x,r) C .

6 Green’s function and Dirichlet problem

Remember the following theorem:

Theorem 6.1. Let f be a function in C*(R™). Define



where 1
——1 =2
o og|zl, n

1

2—n
e — > 3.
n(n —2)a, e[ >

Then
—Au = fin R" (6.1)

Remark 6.2. u+ ¢, u+b-x are also solutions to (6.1), if u is.

Our goal is to solve the following Dirichlet problem:

—Au = f inQ
u = g on 0.

Note that the uniqueness of the solution of a Dirichlet problem was already proven
in Theorem 5.14.

Idea (bad): Define V(z) = [, ®(z —y)f(y) dy. Then —AV = f in Q. But now
might not be V(z) = g on 092!

Definition 6.3 (9%). Fix x € 2. Assume that there exists a function ®* : Q — R
that solves the problem

{Ay@x(y) = 0 forall ye (6.2)

P*(y) = P(x—y) forall ye .

See Example 6.11 for some cases of &*. Next we will assume that we have solved
(6.2) for Q.

Definition 6.4 (Green’s function). Green’s function in € is defined by
G*(y) = G(,y) = Ga(z,y) = D(xr —y) = P°(y).
Remark 6.5. o G(x,y) =0 for all y € 9.
o AG(z,y) =0 for all y # =.
e G(y,r) > 00 as y — .

Theorem 6.6 (Representation Formula using Green’s function). Let u € C*(Q2) N
CY(Q). Then

ute) == [ a5 i) - [ Glanaut) d
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Proof. Proof by calculation.

I, = / G(z,y)Ayu(y) dy
Q\B(z,e)
ou
= G(r — y)a—(y) dS(y) — VG(z,y)Vu dy
A(Q\B(z.)) v Q\B(z,¢)

ou 0G(x,
= [ ae-pPwase - [ 9y asty)
A(Q\B(z.¢)) v A(Q\B(z.¢)) v

=0

—~
+ [ Bl ut) dy
A\ B(z,e)

— ]1 . ]2
<K
=0 SMA4ce27" e
1 8u — au
1l < G(x,y) 5 (y) dS(y)| + Gl y)l| 5, W) dS(y)
oQ v JOB(ze) v
h -0 3 <Keen =1 (M+ce2-m) =%
= 0.
G (z,y) G (z,y)
If = / u(y) dS +/ u(y) dS
o (y) dS(y) Y (y) dS(y)
— 121 +122
00(z — y) oP* (y)
S / ——u(y dSy—/ u(y) dS(y
b OV (y) dS(y) piee) O (y) dS(y)
Ei))u(ac) Yy
e—0

Therefore I, = I} — I2 — —I*' —u(z) as € — 0. As a limit we have

[ ctemauty) ay=- [ ZEED ) asi) - uto)
Remark 6.7.
ou
~Bu(y) = f5) € C(0) = [ ) dy =~ €0 Auly) dy =~ [ 5 aS(p) < .

Theorem 6.8. Suppose u € C(Q) N CY(Q) is a solution to
—Au = f inQ
u = g ondf.

Then

e == [ FEE as)+ [ Ganrw) dy
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Theorem 6.9. For all x,y € Q such that x # y,
G(z,y) = Gy, ).
Proof. Fix x,y € Q, x # y. Write
v(z) = G(z,2) and w(z) = G(y, 2)

for all z € Q.
Idea:

—Av(z) =0, = w(z) :/Qw(z)éxz—/Qsz(z)w(z)
A =8, = o) = [ @, == [ AwlE)le)

Q
= v(y) = w(x).

Recall, that v(z) = w(z) = 0 for all z € 92. Choose £ > 0 small enough, that
B(xz,e) N B(y,e) =0, B(z,e) C Q, B(y,e) C Q. Denote Q' = Q\ (B(z,e) UB(y,¢)).
Then

0 = //U(Z) Aw(z) —w(z) Au(z) dz
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where

ow ov
Ir = / v—de—/ w—— dS(x
B OV (@) OB(ze) OV (@)

= 2+ I,

- ow
12| < ()] |5, (=) dS(@)(z)
OB(z,e) ~—~— v
SC€27"+MW—/
<M|z—y|
e—0
— 0.
()] = |G(z,2)] < [®(z —2)| +|P7(2)]

< clz—a "+ M

= >+ M on 0B(z,¢).

e—0

— 0

0P(z — x) / 0P*(z)
Irr, = —/ w(z)——F5— ds(z) + w(z ds(z
2 9B(x.e) ) v ) JOB(.e) ) v ( z
=
= —][ w(z) ds(z)
OB(z,)
= —w(x).

Calculate in same fashion and obtain /¢ = v(y).

We need bigger weapons in war against the equations, so:

Theorem 6.10 (3G Theorem). Let Q@ C R"™, n > 3 be a bounded smooth domain.
Then there ezists ¢ = ¢(2) > 0 such that

G(z,y)G(y, 2)
G(z,2)

<c(lz—yf " +1ly—2T).

Proof. Proof left as an exercise. Y]

Example 6.11 (¢*). Case 1: Let Q = R =: {z = (21, 20,...,2,) € R" : 2, > 0}.

Then &% (y) = ®(y — T), where T = (21, 29,...,—Zy).

Case 2: Let Q = B(0,1). Then *(y) = ®(|z| (y—7T)), where T = ﬁ To be proven
T

later.
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Remark 6.12.

Gry =G(z,y) = P(y —2) — 2(y — T)

0G(z,y) 0
“or VyGlz,y) - viy) = a—ynG(ﬂ?,y)
(0,...,0,—1)
na, \ly—z*  |y—zf"
22,

Cnap |y — x|
Definition 6.13 (Poisson kernel for R’ ). We call the function

2x,
K(z,y) =

—, x€RY, yedR"
na(n)ly — z| i i

the Poisson kernel for R .

Theorem 6.14. Assume g € C(OR"}) is bounded such that |g(y)| < M for all y €
OR"} . Define

u(r) = K(z,y)g(y) dS(y)

aR™
forallz € R} andy = (y1,...,Yn-1,0). Then
(i) u e C®(R"™) and u is bounded in R
(ii) Au=0 in R}

(111) }:11)% u(x) = g(y) for all y € ORY.

zeRi

Proof. Proof of (i). faRj_ K(z,y) dS(y) =1 for all z € R”. Unformal:

oG (z,y)

K(a:,y):/ 5 dS(y) v=1(0,...,0,—1) on OR"
R} roo9v

since —A,G(x,y) = d,.
Formal:

—/ AG(z,y)dy=...e - 0...=1.
RY\B(z,e)

lu(x)| < K(z,y)lg(y)| dS(y) <M VY xeRY}
m
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u € C*(RY):

Diu(z) = [ DIK(z,y)g(y) dS(y).
OR™
D
Proof of (ii).
Boulw) = [ AK(25)g(y) dS()
oy
K(z,y) = —0,,®(x — y) so K is harmonic with respect to x.
2
nay, |zl
)

Proof of (ii). Fix xp € OR"}, € > 0. Choose 0 > 0 so small that

l9(y) — g(x0)| <&,

if |y — x| <6, y € OR". Then if [z — 20| < §, 2 € R,

[u(x) = g(wo)| < [ K(x,y)]9(y) — g(xo)| dS(y)

_ / K(z,9) |g(y) — 9(x0)| dS(y)
ly—a0| <8 —
+ / K(z,) |g(y) — g(z0)| dS(y)
ly—wo| >0 T
<e+2M K(z,y) dS(y).

ly—z0|>0

|y — @o| > & implies |y — x| < |y — 2] + o — @] 50 |y — | > L5%! Thus

ly—=g|
2

2%, CIp,

K -
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and therefore

/ K(z,y) dS(y) <c / w_x—zoynds(y)

ly—z0|>0 ly—zo|>6

=c — dS(y)
/y|>5 ‘?J’
1
= cxn/ —m dy
\y|>6 7]

o] [ 2w

) 8B(0 r

—c(n)r" 2—ndp
N >
TV

=ci—1

Tn
=c— <g¢g,

J
J
if |z,| < |z —x0| < Mg Here § = (y1, ..., Yn—1). Soif |z — x| < min (£, %), then

lu(x) — g(xo)| < 2e.
Ui
[l
Next we'll deduce the @* for the unit ball. If y € 0B(0, 1), then

z—y®  |%r y‘ <| y’\x|2_y>
z—y* -yl (r —y,x —y)

_ <##> _2<\§—|>y> +{y.y)
(@, x> 2 (z,y) + (y,y)
-y +1l

_ P ~ B

o = 2(e,y) + 1 Jalt

zZ—yl 1

e =yl Jal

Theorem 6.15 (¢” for the unit ball). Let B = B(0,1) = {z € R" : |[1| < 1}. Then

P(y) = @ ((y —7) - |=])

Therefore

18 the solution to

{Aygbm(y) = 0 forall ye€ B (6.3)

P*(y) = P(y—=x) forall yeIB.
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Proof.
& (y) = |=*" nln = Do, ly—z* " = [a " 0y — T)

is harmonic in B.

" (y) =0 ((y —7) - |af) = m y— a2

when |z| = 1, that is, on 0B.
Remark 6.16.

0G(r,y)
00— a,Gla9) - vly)
B - 8G. '

3G<x )= 00(y —x) 9% ((y —7)|z])

0y v= 0y Oy
1y —
na, [y — z|"
I y—m

—|M
noy, |y — T
na, |lr—y[*

Therefore (exercise)

oG(ey) 11—

ov Cnay, v —y|™
This gives us the motivation for the next definition.

Definition 6.17 (Poisson kernel for the unit ball). Let B = B(0,1) = {z € R" : |z] < 1}.
For all x,y € B, we define the Poisson Kernel for B by setting

11—z

: .
noy, | — vyl

Theorem 6.18. Let g € C(0B(0,1)) be a fized function. Define

K(z,y) =

u(z) = /a o) K(z,y)g(y) dS(y)

for all x,y € B(0,1). Then
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(i) u € C>=(B(0,1)) N C(B(0,1))
(i) Au =0 in B(0,1)
(iii) u(z) = g(x) for all y € OB(0,1).
The same holds for B(0,r) with

Kiay) = T
Ty =——"7—"-99H——
Y nanr‘x_y‘na

the Poisson kernel for B(0,7) C R™.

Theorem 6.19 (Energy method). There exists at most one solution v € C?*(Q) N
CH(Q) to

{—Au = [ inQ (Euler-Lagrange equation) (6.4)

u = g ondS.

Proof. Let uy,us € C%(Q2) N CY(Q) be two solutions to (6.4). Let w = u; — us. Then

—Aw = 0 inQ
{ w = 0 on J. (6.5)
0:/—Aw-wdx:/\Vu}|2
0 0
implying |[Vw|* = 0 in Q. Thus w = 0 in €. O

Definition 6.20 (Energy). We define energy by setting

I(u) = %/Q|Vu|2 —uf dz,
where u belongs to the admissible classical
K={uelC*(QnC'(Q):u=gondQ}
where f € C(Q) and g € C(9Q) are given.
Theorem 6.21. Assume that u € C%(Q) N C*(Q) solves (6.4). Then

(i)
I(u) = min I (w).

weK

Le. I(u) < I(w) for allw € K.

(ii) Conversely, if u € K is such that I(u) = mingex I(w), then u is the solution of

(6.4).
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Proof. Proof of (i). Fixw € K. Let v =w—u € C*(Q)NCY Q). v =0 on 9. Now
/fvdx:/—Au-de
Q Q
:/VUVU dz
Q

:/Vu (Vw — Vu) dz.
0

We want to prove that I(u) < I(w), that is
1 , 1.
— [ |Vu|" —uf de < = |Vw|" —wf dz
2/, 2
1
& —/ |Vu|® — |Vl dz < —/vf dz = / \Vu|* — VuVw dz
2 Ja 0 0

1
<:>0§—/|Vu—Vw|2 dz.
2 Ja

Proof of (i1). Fix ¢ € C§°(f2). For t € R we define

w=u+tp e K.

We define

h(t) = I(u+ ty).

Then h(0) < h(t) < I(u) < I(w) for all ¢ € R and
h'(t)|t=0 = 0.

0=nh(t) = %/Q]V(u—l—tgo)F —(u+ty)f do

W (t)|i=0 = / V(u+tp) Vo —of drf—
Q

:/Vu-Vgodx—/gofda:
Jo o Ja

~
=— [q Aup dz

— [ (~au=p)p s

implying —Awu = f in Q.
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Theorem 6.22. Let u € C*(B(0,1))NCY(B(0,1)), B(0,1) C R, n > 3 be a solution
to
—Au = |u\ﬁ u in B(0,1)
u 0 on OB(0,1). "

Then v =0 in B(0,1).

Proof. Proof left as an exercise, because I can’t make sens of the "proof” in the
notes. O
7 Helmholtz’s equation

Let © C R" be bounded C'-domain. We aim to solve following problem (Helmholtz
equation): Find u € C%(Q) N C1(Q) such that

—Au = X inQ, MeR
{ v = 0 ondf. (7.1)
Remark 7.1. If A <0, then u = 0.
Proof.
/ —Au - udx—/)\u u dx
Q
& / |Vu|” dz = / u? dz,
<0 &,_/
>0
which implies © = 0 in €. [

Definition 7.2 (Eigenvalue, eigenfunction). \ € R is an eigenvalue of —A in ,
if (7.1) has a non-trivial solution v € C*(Q2) N C*(Q2). We call the solution u the
eigenfunction corresponding to this eigenvalue .

Definition 7.3 (Rayleigh’s quotient). Let w € C*(Q)NCYQ), w Z0in Q, w =0

on 0f). We define )
Jo IVw|”™ dz -0

Q(w) - j‘Q U)2 —
and
= inf Q(w).
Theorem 7.4.
n? 0
" 4 diam(€2) ”
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Theorem 7.5 (Poincaré inequation).
4 diam(2)?
/w2 dr < #()/ \Vw|® da.
Q n Q

for all w € CY(Q) such that w =0 on 9.

Remark 7.6. It suffices to prove that
2

n
inf > — .
ol Q) = Gy
w=0 on 0N
wZ0

Proof.
2 q,. b 2y
n/ﬂw dz = /QV(w) x
— ‘_/ O, (WP () - 2; da
Q

< |—2|/ lw| |Vw - z| dz.
0 N——

<|Vw|lz|

This implies

2 diam(2
/w2 dxﬁm—m()/leVw] dz
Q n Q
1 2 di 0)?
S—/w2 dx+m/ww\2 dz.
2 Q n? Q

(Note that: 2ab < a® + b and put a = %5, b = V2922 |Vw|.) Thus,

4 diam(2)?
/w2 dz < dlL;)/ \Vw|* dz.
Q n Q

Lemma 7.7. If \ is an eigenvalue of —A in €, then A > m.
Proof. There exists v € C?(2) N C'(Q) such that v # 0 and v = 0 on IQ and
—Av = .

/|Av\2:/—Av~vdx:/)\v'vdx
0 Q 0
:)\/UQdJZ
Q

B fQ ]Vv|2 dzx -
N fQ v2 dx m

Then

implying
A
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Theorem 7.8. Suppose that there is u € C*(Q) N CYQ), u =0 on IQ, u Z 0 in Q,
such that Q(u) = m. Then m is the smallest eigenvalue of —A (the first eigenvalue,
principle eigenvalue, A;) and w is the principle eigenfunction.

Proof. For all p € C°(Q), t € R, w; = u + tp. Let

_ Jol Vit to)f da

h(t) = Q(wt) f |U+t90|2 dr

Then h'(t)|t=o = 0. Calculate and obtain

Vul? d
/Vu-Vgpdx:M/ugodm
Q Q

fQ u? dx

=[q(—Au)p dz =m

Then [,(—Au —mu)e dz = 0. Thus
—Au—mu =0
in €. ]

Theorem 7.9. There exists u € C%(Q) N CL(Q), such that u =0 on I, u Z 0 in

and )
_ fQ\Vu| dr

Jou? dx
Remark 7.10. e m=X\ =X(2)>0

Q(u)

e Let u be an eigenfunction to A1, then Q(u) =m = \.
Theorem 7.11. Let u be an eigenfunction to A\;. Then u > 0 in Q oru < 0 in €.
"Proof”. u=ut +u~, where u™ = max(u,0), v~ = min(u,0). Then

o |divul® dz Ja |divut)? + [, |dive [

m = Qu) Jou? dz Jo(u)? de + [ (u)?
(Problem: u—,ut ¢ C*(Q)!)
o, [div uE |
Jo(uF)? dz —
implies Q(u*) = m. Thus u is solution to (7.1), with A = \;. Therefore u™ > 0 in
Qoru” <0in . O

Definition 7.12 (H,).
Hi={ueC*()NCQ): —Au=M\uin Q,u=0on dQ}.

Theorem 7.13. H; is 1-dimensional. That is, A1 is simple.
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Proof. Let u,u be eigenfunctions to A;. We want to show that there exists ¢ such
that
u = cu in Q.

Let

for some zy € €2. Then
—A (u — ku) = A\ (u— ka),

e T
implying that w > 0 or w < 0in Q or w = 0. Thus w = 0. [

Theorem 7.14. Let u and v be eigenfunctions to A and p respectively. Then either
A=por [qu-v=0.

Proof.
—Au:)\u=>/—Auv dx:)\/uv dx
Q Q
—Av:uvi/—Avudx:u/uvdx.
Q Q

But fﬂ —Auv dr — fQ —Avu dz = fQ VuVv dz = 0, so

()\—,u)/guvdx—o.

How to find \,?
A = inf {Q(w) : w € C*(Q) N C*(Q),w =0 on 9N, w # 0 in Q}
Hi={ueC*()NCHQ): —Au= X uin Q,u =0 on 0Q}
Ay = inf {Q(w) cw € CHQ)NC*HQ),w =0 on 0N, w # 0,/Qwu dr =0Vu e Hl}
Hy={ueC*()NCQ): —Au = Xu in Q,u =0 on 90}
)\3:inf{Q(w) cw € C* Q) NC*(Q),w=0on 8Q,w;¢_0,/gwu de =0Vu € H1UH2}

and so on...

Theorem 7.15 (Weyl Asymptotics).

N 472k
(0, €2) 7
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Figure 8: Two sets with same eigenvalues [3]

Theorem 7.16 (Polya Conjecture). Open:

472k
k2 %
(s |Q]) 7
Best known:
Xk:A S _n A2kt
p b= n+2(an|Q|)%'

Remark 7.17. Kac problem: Up to what extend the geometry of €2 can be recovered
from {\;};°,

Q: Are there any two different domains that have exactly same eigenvalues?
A: Yes.

Theorem 7.18. Let n = 2, and €2 be smooth. Then

Z M 8'?'75 S(1=r)+0(),

as t — 0, where r is the number of holes in 2.

8 Heat equation

Next we shall consider the heat equation: Find u : R"x]0,00[— R, (x,t) — u(z,1)
such that

Owu(z,t) — Agu(z,t) =0. (8.1)
—_——
D i Oz;a;u(w,t)

Also denoted dyu — Au =0 or uy — Au = 0.
Derivation of equation: Let u(x,t) be the temperature of something at point z at

time t. By Fourier’s law:
F = —kVu,
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where F' is the heat flux, the rate of flow of heat (energy) per time through a unit
volume of material and k is the conductivity of the material (at =, k(z)). Now, by
Conservation of Enegy Law: Let V' C R™ be a smooth set. Then

/V@tu(as,t) dx:gt/vu(x,t) dm:—/avF-udS(x)
:/av kEVuv dS(x)

= / div(kVu) dz.
v
Therefore dyu — div(kVu) = 0. Put k = 1 and we have
ou — Au = 0.

8.1 Fundamental solution

Definition 8.1 (Heat kernel ®). The function
L -2 eR"t>0
—e i, ,
P(x,t) = ¢ (4rt)2
0, reR"t<O0.
is called the fundamental solution of heat equation, the heat kernel.

Lemma 8.2. For allt > 0,

/ncp(x,t) dv = 1.

Proof. For all t > 0, using the change of variables: z = 2 dz = (V4t)" dz, we
obtain
1 —|z|?
/ O(x,t) de = 1/ e 1 dx
1
= —n/ e * dz
nz Jrn

n

1 /‘X’ 2 )
:H — e “idzy ) =1
L (5[« o) -

FExercise

8.2 Adding boundary condition

To solve problem with a boundary condition consider

{atu—Au = 0 in R"x]0,00]

u = g on R"x{0}
{atu(x,t) — Au(z,t) = 0 in R"x]0,00]
u(zx,0) = g(x) on R™x {0}.
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Then the solution is
ulet) = [ B p.000) dy

for all x € R™ and ¢ > 0.

(8.2)

Theorem 8.3. Assume g € C(R") is bounded. Define u(x,t) as in (8.2). Then

(1) uw e C*(R"x]0,00[) N C(R™ x [0, o0])
(ii) Opu — Au = 0 in R"x]0, 00|

(i)  lim  w(z,t) = g(xg) for all zo € R™.
(z,t)—(z0,t)
zER™
>0
Proof. Proof of (i).
u(z,t) = (-, 1) * g(x)

||

e € C(R"x]0, 00|

la,1) = (47rlt)’5

Proof of (ii). We need following lemma. The proof is left as an exercise.

Lemma 8.4. For allt >0
0:®(x,t) — Ay®(z,t) = 0.

By the lemma

ue.t) - Bu(a,t) = [ (0B~ y.t) = AR ) g(0) dy

N
n

=0
=0.

Proof of (iii). TODO.

8.3 Non-homogenous heat equation

The non-homogenous heat equation is

{&u(x,t)—Au(x,t) = f(z,t) in R"x]0,00]
u(zx,0) = g(z) on R™x{0}.

Theorem 8.5. For all x € R™ and t €]0, 00|,
t
uet) = [ owa-v.t) dy+ [ [ fooBe -t -s) dy ds
is solution to (8.5).
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Theorem 8.6. Assume f € Co'(R" x [0,00() (that is, O f is continuous and Oy f
is countinuous) and that f has compact support in R™ at each t € [0,00[. Define
u € R"x]0,00[— R as

u(z,t) = /ng(y)q’(x —y,t) dy+/0 . f(y,8)@(x —y,t —s) dy ds.
Then
(i) u e C*(R"x]0, o0[)
(11) Opu — Au = f in R"x]0, 00|

(111) Am u(z,t) =0 for all xy € R™.
t—0+

Proof. TODO O

8.4 Properties of solutions to heat equation

Definition 8.7 (Heat ball). Fix z € R", ¢t > 0 and r > 0. We define the heat ball by
setting

Bl t,r) {(y,s) ER™ Dz —yt—s) > — }

(4m)2rn
where
1 \f(;yli <t
—_— e —s , S
Q(x —y,t —s) =1 (4r(t —s)2
0 s>t

or by setting
E(z,t,r)={(y,s) eER"™ it —r<s <t |z —y| <R.(s)},

where
r

Ry(5) = (20lt = 9o ﬁ) |

Theorem 8.8 (Mean Value Property for solutions to heat equation). Letu € C*1(2x]0,T),
Q C R"™. Denote Qp = Qx]0,T[. Assume u is a solution to the heat equation

Oy — Au =0 in Qp.
Then

1 & —yI’
o) = Gt | fy G W

1 ly — 7|
= = ) dy ds,
2(47T)27”"//3E(x,t,r)uw s) T, W
for all E(x,t,r) C Q.
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Definition 8.9 (Parabolic boundary of Qr). Let Qpr = Qx]0,T[, where T" > 0,
2 C R™. We define the parabolic boundary of Qr by setting

Fr=Qx{t=0})N (00 x[0,7T]).

Theorem 8.10 (Strong Maximum Principle). Assume u € C*'(Q7) N C(Qr) solves
the heat equation Oyu — Au =0 in Qr. Then

(i) maxu = maxu
Qr Ir

(i) Suppose that u(zwo,ty) = maxu for (xg,t9) in Qp \ T'r. Then

Qr

u(z,t) = u(zo, to) in Q x [0, ).

Proof. TODO n

Theorem 8.11 (Uniqueness). There exists at most one solution u € C*'(Qp)NC(Qr)
of the initial-boundary value problem

ou—Au = f in Qp
u = g on I'p’

Theorem 8.12 (Mean Value Property for the Cauchy Problem). Suppose that u €
C*L(R"x]0,T[) N C(R™ x [0,T]) solves the heat equation

Ou—Au = 0 in R"x]0,T]
u = g on R"x {t=0}
and u(z,t) < Ae“"”‘Q, re€R", 0<t<T,a, A>R". Then

sup u =supg < oQ.
R7™x[0,T] NG

Proof. TODO [

Theorem 8.13 (Uniqueness). There exists at most one solution u € C*'(R"x]0, T[)N
C(R™ x [0,T)) of
Ou—Au = f in  R"x]0,T]
u = g on R"x{t=0}
such that u(z,t) < Ae“'w‘Q, re€R", 0<t<T foralla,AeR.

Theorem 8.14. There exists at most one solution u € C*'(R™x]0, T[)NC(R"x [0, T7)

of
{&U—Au = f in Qp

u = g on I'p’

Proof. TODO O
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Theorem 8.15 (Backward Uniqueness). Suppose that u, @ are smooth solutions of

ou—Au = 0 in Qr
u = 0 on 00 x][0,T]
and
Bii—Ai = 0 in QO
U = 0 on 00 x[0,T]"
If u(z,T) = a(z,T) for all x € Q, then u =0 in Q.

Definition 8.16 (Parabolic Cylinder). We define parabolic cylinder by setting
Cla,t,r) ={(y,s) : ly —z| <rt—1*<s<t}.

Theorem 8.17. Let u € C*1(Qx]0,T]), Q C R" be a solution to dyu — Au = 0 in
Qr. Then u € C*(Qr) and we have the following estimates: For all k,l € N there
exists Cyin > 0 depending only on k,l and n such that

l k,l,n
D | < k+2l+n+2/ / ‘ dy ds

C(zo,to, T

max
C(CC() t() 5

for all C(xq,tg, ) C Q.
Proof. TODO [

9 Wave equation

In this section we will consider the wave equation: Find u : 2x]0,00[— R, Q@ C R",
such that

Remark 9.1. e n = 1: vibrating string

e 1 = 2: membrane

e 1 = 3: elastic solid

TODO: Derivation of equation.

9.1 Adding boundary condition

Consider wave equation with boundary condition

Oyt — Oggu = 0
u(@,0) = glx) (9.2
Owu(z,0) = h(z).
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Theorem 9.2. Let n=1. Then

1 1 T+t
u(z,t) = é(g(x +t)+glx—1t)) + 5/ h(s) ds (d’Alemhert’s formula)

—t

is a solution to (9.2).

Proof. TODO n

Now, let n > 2 and consider wave equation with boundary condition

(9ttu — (9mu = 0
u(z,0) = g(z) (9.3)
Owu(z,0) = h(z).
Definition 9.3. Let us use the following notation. For all z € R™, ¢t >,r > 0, let
U(z,r,t) ][ dS(y) =0 u(z,t) = U(x,0,t)
0B(z, r)
"= S() " g(x) = G(,0)
0B(z, r)
D= i) dS) S ) = H(w.0)
OB (z,r)

For r <0,
U(z,rt)=U(z,—r,t)
G(z,r) = G(x,—r)
H(z,r) = H(z,—r).

Theorem 9.4. Fiz x € R". Let u be a solution of (9.3). Then U solves the Euler-
Poisson-Darboux equation

3ttU — (9WU = , m RX]O, OO[
U(x,r,0) = G(x,r) forall reR
oU(x,r,0) = H(xz,r) foral reR.

Proof.

0.U (2,1, t) = 0, <]£BW) (1) dS(y)>
-4 Bt dsty

n ) S——
=0pu(y,t)

r

= - / duu(y,t) dy.
na,T B(z,r)
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a”' (rn_laTU(xﬂﬂa t)) - ! ar (/ attu(yv t) dy>
B(0,r)

noy,
1
_ / Oreu(y, 1) dS(y)
OB(z,r)

naoy,

Tnfl
- nOénTn_lgtt (/8B(x,r) U(y7t) dS(y)) '

Thus

O U7, t) + nT_larU(:v, rt) = Oy <][

OB(z,r)

Let us try to solve (9.4). Let n = 3. Define

U(z,r,t) =rU(z,7,1).

Then
0,0,U = 0,(r0,U + U) = r0,,U + 20,U
attU = TattU.
So . .
3ttU - &TU == O
U(r,0) = rG(r)
oU(r,0) = rH(r).

Using d’Alembert’s formula we obtain

U(r,t) =

DN | —

23

(r+)G(r+t) + (r = t)G(r —t)) + 5 / sH(s) ds.

u(y,t) dS(y)) = OuU(x,r,t).
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A(u), 5 heat kernel, 46
AT 4 Helmholtz equation, 42
c(Q),9 Hessian matrix, 3
C! set, 9
(@), 10 linear PDE, 9
k
Ck(Q)’ ) mollification, 25
Co(Q), 9 multi index «;, 8
D?u, 3
D~ 8 order of PDE, 8
Hy, 44 outward normal derivative, 9
K(z,y), 36 outward unit, 9
I'(u), 4
®, 18, 46 parabolic cylinder, 50
R", 35 partial differential equation, 8
ay,, 18 Poisson kernel for R”, 36
%, 25 Poisson kernel for the unit ball, 39
div, 3 principle eigenfunction, 43
n-mollifier, 24 principle eigenvalue, 43
@: ?2)5 quasilinear PDE; 9
{4 semilinear PDE, 9
A, 4 smooth set, 9
Qr, 48 smoothing by local averaging, 25
spt, 3
cc, 4 weak analytic function, 28
dS(z), 10
P*, 32

d’Alemhert’s formula, 51
domain, 3

eigenvalue of a function, 42
energy, 40
Euler-Poisson-Darboux equation, 51

first eigenvalue, 43
frequency of a function, 24
fully non-linear PDE, 9

Green’s function, 32

harmonic function, 17

heat ball, 48
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Index of Theorems

3G Theorem, 35
Analyticity of harmonic functions, 28

Gauss-Green Divergence Theorem, 10
Green’s formulas, 11

Harnack’s Inequality, 30
Integration By Part, 10

Liouville’s Theorem, 29
Local estimates for harmonic functions,
28

Mean value property for solutions to
heat equation, 48

Mean Value Property for the Cauchy
Problem, 49

Mean Value Theorem, 23

Mollifier Theorem, 25

Poincaré inequation, 42
Polya Conjecture, 45

Representation Formula using Green’s
function, 32

Strong Maximum Principle, 49

Uniqueness of a solution to Dirichlet
problem, 27

Weyl Asymptotics, 45
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